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Object recognition

Considerable accumulation of knowledge from computer science, neuroscience, and behavioral 
studies over the past 20 years. Object recognition in computer vision remains a top-priority project, in 
part fueled by practical uses for internet image searches. In neuroscience, there have been extensive 
studies of the role of the primate ventral visual stream in object processing, and the proposed “end-
goal” of basic or “core” recognition. 

We will focus on the computational problems, and consequences for models of human recognition. 
And the role of geometric modeling in theories of object recognition. Discussion of ideal observer 
analysis for 3D object recognition

High-level vision, visual tasks
Let’s set the context for object recognition and review of levels of abstraction & task-dependency. 

Intermediate-level vision

Low-level vision is what can be inferred from image intensity patterns without knowledge that the 
patterns are caused by surfaces, their properties and relationships.

Intermediate-level vision refers to inferences possible without knowledge of an object’s category, using 
only generic object and surface properties. The processes include:



Low-level vision is what can be inferred from image intensity patterns without knowledge that the 
patterns are caused by surfaces, their properties and relationships.

Intermediate-level vision refers to inferences possible without knowledge of an object’s category, using 
only generic object and surface properties. The processes include:

Selection of features likely to have a common cause
Generic, organizational processes, for surface grouping, involving Gestalt principles
Occlusion  (“domain overlap”) & relative surface depth
Perceptual integration

Cue integration (weak fusion)
Cooperative computation (strong fusion)

Attention

Intermediate-level processes are useful for interpreting novel objects and scenes. These processes 
could also be useful for feature extraction to be used to store in memory, and later for testing match 
against stored representations. The idea is that more abstract features and relations would be more 
robust to image variations, of the sort discussed below.

High-level vision

Functional tasks
Object recognition--familiar objects

entry-level, subordinate-level
Object-object relations

Scene recognition
Spatial layout

Viewer-object relations
Object manipulation

reach & grasp
Heading, time-to-contact

Task dependency: explicit (primary) and generic (secondary, nuisance) variables

One can’t think of invariance without considering what has to be discounted for a given type of task to 
achieve it. Consider several classes of scene causes of image pattern I. 

Image = f(shape, material, articulation,viewpoint,relative position, illumination, foreground and 
background clutter)

Which variables are more important to estimate precisely for various tasks?

Task: Object Recognition (labelling)
I=f(shape, material, articulation,viewpoint,relative position, illumination, foreground and back-

ground clutter)

Distinguish: detection, categorization, and identification. We take a closer look below.

Task: Absolute depth (e.g. for reaching)
I=f(shape, material, articulation,viewpoint,position, illumination, foreground and background 

clutter)

Task: grasp
I=f(shape, material, articulation,viewpoint,relative position, illumination, foreground and back-

ground clutter)

Problem: all the scene variables contribute to the variations in the image
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Task: Object Recognition (labelling)
I=f(shape, material, articulation,viewpoint,relative position, illumination, foreground and back-

ground clutter)

Distinguish: detection, categorization, and identification. We take a closer look below.

Task: Absolute depth (e.g. for reaching)
I=f(shape, material, articulation,viewpoint,position, illumination, foreground and background 

clutter)

Task: grasp
I=f(shape, material, articulation,viewpoint,relative position, illumination, foreground and back-

ground clutter)

Problem: all the scene variables contribute to the variations in the image

We will focus on shape-based-recognition

 Shape-based object recognition:

estimate geometrical shape (primary variables)
discount sources of image variation not having to do with shape (secondary variables)

e.g. integrating out geometrical variables such as translation, rotation, and scale, but also 
photometric variables such as illumination, to estimate shape for object recognition. 

 
 We’ll postpone detailed discussion of the crucial problems that variations due to background 

clutter, and within-category shape also need to be taken into account.

Object recognition: computational issues

Analysis of image variation

Which variables are important to estimate for recognition depends on the level of abstraction required. 

Variation within a subordinate-level category 

What distinguishes a mallard from a wood duck? Honeycrisp from a Braeburn? Doberman from an 
Alsation?

Think of all the ways the images (or “appearances”) of an object, like a male mallard duck might vary. 
List the generative causes.

illumination
level, direction, source arrangement, shadows, spectral content

view
scale
translation
2D & 3D rotation

articulation
non-rigid, 

e.g. joints, hinges, facial expression, hair, cloth, wings, 
physical size

small and big apples, shoes, dogs, ...
background (segmentation)

bounding contour (affected by variation in pattern of intensities over the boundary regions)
occlusion (segmentation)

What is left?
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Think of all the ways the images (or “appearances”) of an object, like a male mallard duck might vary. 
List the generative causes.

illumination
level, direction, source arrangement, shadows, spectral content

view
scale
translation
2D & 3D rotation

articulation
non-rigid, 

e.g. joints, hinges, facial expression, hair, cloth, wings, 
physical size

small and big apples, shoes, dogs, ...
background (segmentation)

bounding contour (affected by variation in pattern of intensities over the boundary regions)
occlusion (segmentation)

What is left?

Geometric, metric properties of shape are  important for subordinate
--e.g. sensitivity to “configurational information”, 
but also material (e.g. orange vs. lemon)

Prototype representations -> what kind of model for variation?
Problem:  Given training on only a discrete set of views of an object, how does vision generalize to other 
views of the same object?

Variation within a basic-level category 

What distinguishes any duck  from any dog, or from a chair or an apple?

Shape is important -- but qualitative, rather than metric aspects important. 

Part types and their spatial relationships is one answerE.g. geons and geon relations (Biederman). 
Distinct prototypes each with a space of deformations is another approach.

How to achieve part-relation invariance within a category? I.e. most coffee cups have a hollow 
cylinder and a handle. While the

shapes of parts and relative positions can vary somewhat, there is a level of invariance that con-
strains an instance of a cup to be labeled as a “cup”.

We will look at a structural relations theory, and diagnostic “fragment” theory

Fragment-based methods or "features of intermediate complexity": Ullman, S., Vidal-Naquet, M., & 
Sali, E. (2002). Learning informative features for class categorization.

Variation within  a super-ordinate category 

 Variation is primarily semantic, and non-pictorial, rather than perceptual.  Examples include: bird, 
mammal, furniture, fruit.
Categories can also defined by affordances, e.g. the space of objects that one can sit on.

Levels of abstraction in human recognition

Basic-level vs. subordinate-level

How is the distinction relevant to human behavior?
Behavioral experiments (Rosch et al.)
Issue of prototypes with a model for variation vs. parts and relations.

e.g. average image face, the most familiar
visual priming methods to tease apart distinct representations (e.g. Biederman)

Neuropsychological (Damasio and Damasio)
temporal lobe lesions disrupt object recognition
fine-grain distinctions more easily disrupted than coarse-grain ones

e.g. Boswell patient—can't recognize faces of family, friends, unique objects, or unique 
places. Can assign names like face, house, car, appropriately. 

Also superordinate categories: "tool"
prosopagnosics

faces vs. subordinate-level. Categorization but not identification.
neural evidence for distinction? IT hypercolumns?
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How is the distinction relevant to human behavior?
Behavioral experiments (Rosch et al.)
Issue of prototypes with a model for variation vs. parts and relations.

e.g. average image face, the most familiar
visual priming methods to tease apart distinct representations (e.g. Biederman)

Neuropsychological (Damasio and Damasio)
temporal lobe lesions disrupt object recognition
fine-grain distinctions more easily disrupted than coarse-grain ones

e.g. Boswell patient—can't recognize faces of family, friends, unique objects, or unique 
places. Can assign names like face, house, car, appropriately. 

Also superordinate categories: "tool"
prosopagnosics

faces vs. subordinate-level. Categorization but not identification.
neural evidence for distinction? IT hypercolumns?

Other factors that affect recognition

Computational complexity
E.g. a crumpled piece of paper -- difficult to compute and remember exact shape. 
A set of diagnostic features, or summary statistics, may be more relevant.

Object ensemble
E.g imagine only one red thing in your world--no need to process its shape. You may get the 

correct basic and subordinate-level categories.

Context is important
Small red thing flying past the trees.
High "cue validity" for male Cardinal bird

Context can even over-ride local cues for identity

Sinha and Poggio, Nature 1996
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See too: Cox, D., Meyers, E., & Sinha, P. (2004). Contextually evoked object-specific responses in human 
visual cortex. Science, 304(5667), 115-117.

Getting a good image representation

For object recognition, the contributions due to the secondary or "generic variables", (e.g. illumination 
and viewpoint) need to be discounted, and depending on the level of abstraction, various object 
features such as shape and material may need to be estimated. How?

-- Measurements of image information likely to belong to the object. This principle should constrain 
segmentation.

regions with similar textures, super-pixels (Shi and Malik, 2000;  Sharon et al., 2006)
problems with: specularities, cast shadows, attached shadows (from shading). 
edge detection is really noisy, and ambiguous as to cause, so what are these image "features"?
although noisy,  are edges/groupings sufficiently reliable to determine object class?

-- Cue integration to improve estimates of where object boundaries are located:
combine stereo, motion, chromatic, luminance, etc..

-- Incorporate intermediate-level constraints to help to find object boundaries or "silhouettes". 
Gestalt principles of perceptual organization (symmetry, similarity, proximity, closure, common 

fate, continuity,..)
long smooth lines (David & Zucker,  1989; Shashua & Ullman, 1988; Field and Hess, 1993)

-- "cooperative computation" for object shape, reflectance and lighting.
"intrinsic images" of Barrow and Tenenbaum 
explaining away, e.g. for occlusion

A bottom-up procedure for perfect segmentation or edge-parsing is not known, but is also not needed 
for basic-level recognition. Accurate boundary segmentation may be important for subordinate-level 
decisions, such as identification of an object as being the same, or only slightly different. 
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long smooth lines (David & Zucker,  1989; Shashua & Ullman, 1988; Field and Hess, 1993)

-- "cooperative computation" for object shape, reflectance and lighting.
"intrinsic images" of Barrow and Tenenbaum 
explaining away, e.g. for occlusion

A bottom-up procedure for perfect segmentation or edge-parsing is not known, but is also not needed 
for basic-level recognition. Accurate boundary segmentation may be important for subordinate-level 
decisions, such as identification of an object as being the same, or only slightly different. 

Open questions regarding shape representations

Object geometry--Surfaces & shape, small scale surface structure
How can we describe objects themselves in terms of their geometry? 

Are objects represented in terms of a view-dependent, dense local representation of 
shape, e.g. local surface orientation?

Or intrinsic properties, such as curvature?
Or in terms of parts? What is the relationship of parts of objects to each other?
Compositional representations
Role in object recognition, e.g. structural descriptions

To what extent can intermediate-level computations be short-circuited, if the task is narrower--e.g. 
category labeling with approximate localization?
We’ll come back to this when we discuss neural-network inspired, feedforward models of recognition, 
trained using deep learning methods.

Storing information about an object and matching stored information to new 
appearances

In the next section, we take a closer look at several ways in which to store information about 3D objects 
in a way that is useful for recognizing novel instances or views of these previously seen objects.

Structural description: high-level features or parts plus relations. How would you describe the 
letters

 A, A, A, A, and A that is independent of font? Strokes and their spatial relationships.

Image-based: low-level features plus metric comparisons,  transformations?
2D views?
3D object-centered?

Given a representation of the image information likely to be due to 3D object in memory, how does the 
brain store, then later when given another view, index and verify? Consider two extremes:

Nearest neighbor to 2D views?
Transformation of 3D model to fit 2D view?
Or something in between?
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In the next section, we take a closer look at several ways in which to store information about 3D objects 
in a way that is useful for recognizing novel instances or views of these previously seen objects.

Structural description: high-level features or parts plus relations. How would you describe the 
letters

 A, A, A, A, and A that is independent of font? Strokes and their spatial relationships.

Image-based: low-level features plus metric comparisons,  transformations?
2D views?
3D object-centered?

Given a representation of the image information likely to be due to 3D object in memory, how does the 
brain store, then later when given another view, index and verify? Consider two extremes:

Nearest neighbor to 2D views?
Transformation of 3D model to fit 2D view?
Or something in between?

Two broad classes of models for object recognition

Image-based models

2D image description S, memory model M
-Matching

Try various M’s to test whether S = F(M)? Here one imagines the brain using its generative 
model F, to test for models of S that match S. 

Or one could try to anticipate all the ways in which images of M might vary, and allow for 
those feedforward:

test: F-1 (S) = M? Here one imagines the brain has processes that could operate
feedforward to get the input in the right invariant format to test against memories.

Current feedforward deep convolutional networks fall into this category of models, 
where the input is progressively transformed into a representation that 
can tested and be mapped onto a category label.

What are possible representations of M? And how to model F? Note that M could more or less 
resemble a 2DD or 3D representation.

Image-based or "Exemplar" theories
view-specific features are stored in memory

Image-based models predict view-point dependence (e.g. Rock & DiVita (1987), and in 
general, 

dependence on frequency of experience with particular views.
Poggio & Edelman, 1990; Bülthoff & Edelman, 1992; Tarr & Bülthoff, 1995; Liu, Knill 

& Kersten (1995); Troje & Kersten (1999)

In neural network models, the representations are highly constrained by the assumed 
neural architecture. 

E.g. a hierarchy of spatial convolutions, with pooling and sigmoidal non-linearities. 

A key issue is how efficiently can a recognition model learn new objects perhaps from only a few expo-
sures, and recognize these objects later from completely new views or “appearances”. The next class of 
models tries to address this issue.

Structural description and compositional models

These models emphasize the importance of explicitly representing spatial relationships. In psychology, 
see Hummel, J. E., & Biederman, I. (1992). Dynamic binding in a neural network for shape recognition. 
Psychological Review, 99(3), 480–517. And in computer vision, see Geman, S., Potter, D. F., & Chi, Z. 
(2002). Composition systems. Quarterly of Applied Mathematics, 60(4), 707–736, and Ullman (1996).

Structural description theories use invariants to find parts (assumption is that  this is easier than for the 
whole object), build up description of the relations between the parts which description specifies the 
object. E.g. a triangle shape, the letter "A" (three parts, with two "cross relations" and one " cotermina-
tion" relation".

Could be based on 2.5 D sketch => object-centered representation that is independent of viewpoint? 
e.g. Marr's generalized cylinders
Some versions predict view-point independence. An well-known example is Biederman’s geon theory.

Biederman (1987) proposed a basic vocabulary of parts from the extraction of invariants, "non-
accidental properties", such as:

co-linearity of points or lines => colinearity in 3D
cotermination of lines=>cotermination in 3D (e.g. Y and arrow vertices)
skewed symmetry in 2d=>symmetry in 3D
curved line in 2D =>curved line in 3D
parallel curves in 2D => parallel in 3D (over small regions)

The considerations of non-accidental image properties lead to the  idea of objects being repre-
sented in terms of elementary "parts" or

=> geons (box, cylinder, wedge, truncated cone, etc..) and a description of their spatial 
relationships to each other.

partial independence of viewpoint
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These models emphasize the importance of explicitly representing spatial relationships. In psychology, 
see Hummel, J. E., & Biederman, I. (1992). Dynamic binding in a neural network for shape recognition. 
Psychological Review, 99(3), 480–517. And in computer vision, see Geman, S., Potter, D. F., & Chi, Z. 
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object. E.g. a triangle shape, the letter "A" (three parts, with two "cross relations" and one " cotermina-
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Could be based on 2.5 D sketch => object-centered representation that is independent of viewpoint? 
e.g. Marr's generalized cylinders
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Biederman (1987) proposed a basic vocabulary of parts from the extraction of invariants, "non-
accidental properties", such as:

co-linearity of points or lines => colinearity in 3D
cotermination of lines=>cotermination in 3D (e.g. Y and arrow vertices)
skewed symmetry in 2d=>symmetry in 3D
curved line in 2D =>curved line in 3D
parallel curves in 2D => parallel in 3D (over small regions)

The considerations of non-accidental image properties lead to the  idea of objects being repre-
sented in terms of elementary "parts" or

=> geons (box, cylinder, wedge, truncated cone, etc..) and a description of their spatial 
relationships to each other.

partial independence of viewpoint

Figures below from: Biederman, I. (1987). Recognition-by-components: A theory of human image 
understanding. 
Psychological Review, 94, 115-147.
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Geon theory: example of coding an object into a (partially) view-independent description

Machine learning of compositional models

A 2D compositional model can also be discovered through unsupervised learning given natural image 
databases. A basic idea is to discover “suspicious coincidences, and then recode to remove these, in 
order to discover yet higher-order coincidences. Evidence for a coincidence  comes from detecting 
when p(A,B)>>p(A)p(B).
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Zhu, L., Chen, Y., & Yuille, A. (2011). Recursive Compositional Models for Vision: Description and Review 
of Recent Work. Journal of Mathematical Imaging and Vision, 41(1-2), 122–146. http://-
doi.org/10.1007/s10851-011-0282-2

Kersten, D. J., & Yuille, A. L. (2013). Vision: Bayesian Inference and Beyond. In J. S. Werner & L. M. 
Chalupa (Eds.), The New Visual Neurosciences. MIT Press.

Psychophysics: How sophisticated are the brain’s transformation processes, 
between image and visual memory?

Ideal observer analysis applied to the problem of view-dependency in 3D object recognition (Liu, Knill 
& Kersten, 1995; Liu & Kersten, 1998)

One can imagine two quite different ways of verifying whether an unfamiliar view of an object belongs 
to the object or not. One way is to simply test how close the new view is to the set of stored views, 
without any kind of "intelligent" combination of the stored views. Given a sufficiently good representa-
tion,  a simple measure of similarity could produce good recognition performance over restricted sets 
of views (i.e. not too much self-occlusion).

Another way is to combine the stored views in a way that reflects knowledge that they are from a 3D 
object, and compare the new view to the combined view. The second approach has the potential for 
greater generalization, and accuracy than the first. 

An example of the second approach would be to use the familiar views to interpolate the unfamiliar 
views. Given sufficient views and feature points, this latter approach has a simple mathematical realiza-
tion (Ullman, 1996). An optimal verification algorithm would verify by rotating the actual 3D model of 
the object, projecting it to 2D and testing for an image match.

Liu et al. (1995) were able to exclude models of the first class (comparisons in 2D) and the last class 
(comparisons with a full 3D model) in a simple 3D classification task using ideal observer analysis. The 
ideal observer technique was developed in the context of our studies of quantum efficiency in early 
vision.
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without any kind of "intelligent" combination of the stored views. Given a sufficiently good representa-
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of views (i.e. not too much self-occlusion).
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object, and compare the new view to the combined view. The second approach has the potential for 
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An example of the second approach would be to use the familiar views to interpolate the unfamiliar 
views. Given sufficient views and feature points, this latter approach has a simple mathematical realiza-
tion (Ullman, 1996). An optimal verification algorithm would verify by rotating the actual 3D model of 
the object, projecting it to 2D and testing for an image match.

Liu et al. (1995) were able to exclude models of the first class (comparisons in 2D) and the last class 
(comparisons with a full 3D model) in a simple 3D classification task using ideal observer analysis. The 
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Psychophysics: Ideal observer for the "snap shot" model of visual recognition: 
Discounting views

Here is an example of how to use a simple 2D image-based generative model to psychophysically 
address the question of what kind of image features are most effective in solving an object recognition 
task given varying viewpoints and visual noise. 

Eight views of four objects. (See Tjan B., Braje, W., Legge, G.E. & Kersten, D. (1995) Human efficiency for 
recognizing 3-D objects in luminance noise.Vision Research, 35, 3053-3069.)

Let X = the vector describing the image data. Let Oi represent object i, where i = 1 to N. Suppose that Oi 
is represented in memory by M "snap shots" of each object, call them views (or templates) Vij, where j = 

1, M.

p (Oi X) = 
j=1

M

p Vij X

Set::write : Tag Times in p (Oi X) is Protected. $

M p Vij X

= ∑j=1
M p X Vij p Vij

p (X)

Given image data, Ideal observer chooses i that maximizes the posterior p (Oi X). If we assume that 
the p(X) is uniform, the optimal strategy is equivalent to choosing i that maximizes:

L (i) = 
j=1

M

p X Vij p Vij

M p2 X Vij Vij

12     24.ObjectRecognition.nb



If we assume i.i.d additive gaussian noise (as we did for the signal-known-exactly detection ideal), then

p X Vij =
1

σ 2 π 
p
exp -

1

2 σ2
+X - Vij,2

where the p in the exponent is the number of pixels in the image.

Tjan et al. showed that size, spatial uncertainty and detection efficiency played large roles in account-
ing for human object recognition efficiency. Interestingly, highest recognition efficiencies (~7.8%) were 
found for small silhouettes of the objects, not for line drawings. (The small silhouettes were 0.7 deg, vs. 
2.4 deg for the large silhouettes).

Review of types of generative models for images
As noted above, recognition could proceed by testing whether whether models M of object fit the 
incoming data S, well. I.e. test S = F(M)? But there are many possibilities for the form of the generative 
model F. Below is a review of material from Lecture 7.

Generative models for images: rationale

Generative vs. discriminative models

Discriminative models for inference don’t explicitly model how the image results from the object 
description. In Bayesian terms, an algorithm is based on:
p(object | image). For example, the posterior could be constructed as a look-up table: input image, 
check probabilities on various object descriptions, and pick the one with the biggest posterior probabil-
ity. 

Generative models characterize the range of variations in the image produced by an object or its 
representation. In Bayesian terms, algorithms explicitly model the likelihood:

p(object | image) ∝ p(image | object) p(object)

The pros for a generative are, if the visual system has built-in knowledge that can recapitulate the 
generative process, then recognition should be able to better generalize to novel appearances of a 
learned object. E.g. to deal with 3D rotations, occlusion. It can learn new objects with fewer examples. 

Cons:The consensus in the field has been that modeling generative processes, especially 3D to 2D 
rendering, can be complex, take too much time to be practical. But see: Kulkarni, T. D., Tenenbaum, J. 
B., Mansinghka, V. K., & Kohli, P. (2015). Picture: A Probabilistic Programming Language for Scene 
Perception. Kulkarni, Tejas Dattatraya. Institute of Electrical and Electronics Engineers (IEEE).,  
http://dspace.mit.edu/openaccess-disseminate/1721.1/96620

We review the types of generative models with a view to asking whether human vision can be modeled 
as incorporating a particular kind of generative knowledge for object recognition.
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Discriminative models for inference don’t explicitly model how the image results from the object 
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rendering, can be complex, take too much time to be practical. But see: Kulkarni, T. D., Tenenbaum, J. 
B., Mansinghka, V. K., & Kohli, P. (2015). Picture: A Probabilistic Programming Language for Scene 
Perception. Kulkarni, Tejas Dattatraya. Institute of Electrical and Electronics Engineers (IEEE).,  
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We review the types of generative models with a view to asking whether human vision can be modeled 
as incorporating a particular kind of generative knowledge for object recognition.

Characterize the knowledge required for inference

Feedforward procedures:

Pattern theory perspective: "analysis by synthesis"--synthesis phase explicitly incorporates generative 
model

Note that a top-down generative model can be used in more than one way. The above figure shows it 
being used to find errors in the top-down predictions. It could also be used to find consistent features. 

Generative models can make it easier to conceptualize information flow: Mapping is  many-to-one. 
But as pointed out above,  not necessarily easy to compute. For example, realistic 3D graphics render-
ing is computationally intensive.

Two basic concepts: Photometric & geometric variation
Two more basic concepts: 3D scene-based & 2D image-based models of geometric variation

3D Scene-based modeling: Computer graphics models

Objects & surfaces: Shape, Articulations, Material & texture. Illumination: Points and extended, Ray-
tracing, Radiosity

Viewpoint/Camera

Projection geometry, homogeneous coordinates: perspective, orthographic
Application to viewpoint variation:  Does human vision compensate for variations using "built-in" 
knowledge of 3D?
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Image-based modeling

Linear intensity-based

Basis sets:
I = m1*I1 + m2*I2 + m3*I3 + ...

application: optics of the eye

Application in your homework: illumination variation for fixed views of an object, can be useful in 
object recognition

Linear geometry-based

Affine:
rigid translations, rotations, scale and shear

Application in your homework:  viewpoint variation: 2D approximations to 3D variations?

Non-linear geometry-based

Morphs
Application:within-category variation for an object,or objects

finding the "average" face
Both linear and non-linear based methods raise the general question:

Does human recognition store object prototypes together with some perhaps image-based model 
of possible transformations to look for

a match of incoming image data with a stored template?

Modeling geometric variation: 3D scene-based modeling
Let's assume that the 2D spatial locations of certain features are stored for a given object. The math 
that describes how the 3D locations can be transformed and mapped on to the retinal coordinates has 
been known for many years, and is built into virtually all 3D graphics engines. The math will give us a 
handle on how to quantitatively think about matching image features to stored memory.

Let's look at the math. There are four basic types of transformations: rotation, scale, translation, and 
projection. First rotations. Then we'll put rotations together with the other transformations using 
homogeneous coordinates.

Representing Rotations

See Rotate[] and RotationMatrix[] for built-in Mathematica functions for doing rotations.
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Euler angles

Euler angles are a standard way of representing rotations of a rigid body. 
A rotation specified by the Euler angles psi, theta, and phi can be decomposed into a sequence of three 
successive rotations: first by angle psi about the z axis, the second by angle theta about the x axis, and 

the third about the z axis (again) by angle phi. The angle theta is restricted to the range 0 to π . 

In[2]:= RotationMatrix3D[ψ_, θ_, ϕ_] :=
Cos[ϕ] Cos[ψ] - Cos[θ] Sin[ϕ] Sin[ψ] Cos[θ] Cos[ψ] Sin[
-Cos[ψ] Sin[ϕ] - Cos[θ] Cos[ϕ] Sin[ψ] Cos[θ] Cos[ϕ] Cos[

Sin[θ] Sin[ψ] -Cos[ψ]

In[3]:= RotationMatrix3D[ψ, θ, ϕ] // MatrixForm
Out[3]//MatrixForm=

Cos[ϕ] Cos[ψ] - Cos[θ] Sin[ϕ] Sin[ψ] Cos[θ] Cos[ψ] Sin[ϕ] + Cos[ϕ] Sin[ψ] Sin[θ] Sin[ϕ]
-Cos[ψ] Sin[ϕ] - Cos[θ] Cos[ϕ] Sin[ψ] Cos[θ] Cos[ϕ] Cos[ψ] - Sin[ϕ] Sin[ψ] Cos[ϕ] Sin[θ]

Sin[θ] Sin[ψ] -Cos[ψ] Sin[θ] Cos[θ]

In[4]:= RotationMatrix3D[ψ, 0, 0] // MatrixForm
Out[4]//MatrixForm=

Cos[ψ] Sin[ψ] 0
-Sin[ψ] Cos[ψ] 0

0 0 1

In[5]:= RotationMatrix3D[0, θ, 0] // MatrixForm
Out[5]//MatrixForm=

1 0 0
0 Cos[θ] Sin[θ]
0 -Sin[θ] Cos[θ]

In[6]:= RotationMatrix3D[0, 0, ϕ] // MatrixForm
Out[6]//MatrixForm=

Cos[ϕ] Sin[ϕ] 0
-Sin[ϕ] Cos[ϕ] 0

0 0 1

Homogeneous coordinates

Rotation and scaling can be done by linear matrix operations in three-space. Translation and perspec-
tive transformations do not have a three dimensional matrix representation. By going from three 
dimensions to four dimensional coordinates, all four of the above basic operations can be represented 
within the formalism of matrix multiplication. 
Homogeneous coordinates are defined by: {xw,   yw,   zw,  w }, (w not equal to 0). To get from homoge-
neous coordinates to three-space coordinates, {x,y,z}, divide the first three homogeneous coordinates 
by the fourth, {w}. For more information, see references on 3D graphics, e.g.  Foley, J., van Dam, A., 
Feiner, S., & Hughes, J. (1990). 
The rotation and translation matrices can be used to describe object or eye-point changes of position.  
The scaling matrix allows you to squash or expand objects in any of the three directions. Any combina-
tion of the matrices can be multiplied together or concatenated. But remember, matrices do not in 
general commute, so the order is important. The translation, rotation, and perspective transformation 
matrices can be concatenated to describe  general 3-D to 2-D perspective mappings.
We will use these definitions later when we develop a theory for computing structure from motion, 
spatial layout and direction of heading.
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In[7]:= XRotationMatrix[theta_] := {{1, 0, 0, 0},
{0, Cos[theta], Sin[theta], 0}, {0, -Sin[theta], Cos[theta], 0}, {0, 0, 0, 1}};

YRotationMatrix[theta_] := {{Cos[theta], 0, -Sin[theta], 0},
{0, 1, 0, 0}, {Sin[theta], 0, Cos[theta], 0}, {0, 0, 0, 1}};

ZRotationMatrix[theta_] := {{Cos[theta], Sin[theta], 0, 0},
{-Sin[theta], Cos[theta], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

ScaleMatrix[sx_, sy_, sz_] := {{sx, 0, 0, 0}, {0, sy, 0, 0}, {0, 0, sz, 0}, {0, 0, 0, 1}};
TranslateMatrix[x_, y_, z_] := {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {x, y, z, 1}};
ThreeDToHomogeneous[vec_] := Append[vec, 1];

HomogeneousToThreeD[vec_] := Drop
vec

vec〚4〛
, -1;

ZProjectMatrix[focal_] :=

{1, 0, 0, 0}, {0, 1, 0, 0}, 0, 0, 0, -N
1

focal
, {0, 0, 0, 1};

ZOrthographic[vec_] := Take[vec, 2];

Translation by {d_x, d_y, d_z} can be found by applying the matrix

In[16]:= Clear[d];
TranslateMatrixdx, dy, dz // MatrixForm

Out[17]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
dx dy dz 1

In[18]:= {x, y, z, 1}.TranslateMatrixdx, dy, dz

Out[18]= x + dx, y + dy, z + dz, 1

to {x,y,z,1}
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The scaling matrix is:
In[19]:= ScaleMatrixsx, sy, sz // MatrixForm

Out[19]//MatrixForm=

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

There are three matrices for general rotation:

z-axis (moving the positive x-axis towards the positive y-axis)

In[20]:= ZRotationMatrix[θ] // MatrixForm
Out[20]//MatrixForm=

Cos[θ] Sin[θ] 0 0
-Sin[θ] Cos[θ] 0 0

0 0 1 0
0 0 0 1

x-axis (moving the positive y towards the positive z)

In[21]:= XRotationMatrix[θ] // MatrixForm
Out[21]//MatrixForm=

1 0 0 0
0 Cos[θ] Sin[θ] 0
0 -Sin[θ] Cos[θ] 0
0 0 0 1

y-axis (moving positive z towards positive x):

In[22]:= YRotationMatrix[θ] // MatrixForm
Out[22]//MatrixForm=

Cos[θ] 0 -Sin[θ] 0
0 1 0 0

Sin[θ] 0 Cos[θ] 0
0 0 0 1

Perspective

Perspective transformation is the only one that requires extracting the three-space coordinates by 
dividing the homogeneous coordinates by the fourth component w.  The projection plane is the x-y 
plane, and the focal point is at z = d.  Then  {x,  y,   z,  1 }  maps onto  {x, y, 0,  -z/d + 1 } by the following 
transformation:
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In[23]:= Clear[d]
ZProjectMatrix[d] // MatrixForm

Out[24]//MatrixForm=

1 0 0 0
0 1 0 0

0 0 0 - 1
d

0 0 0 1

After normalization, the image coordinates {x',y',z'} are read from:

The steps can be seen here:

In[25]:= Clear[x, y, z, d]
{x, y, z, 1}.ZProjectMatrix[d]
{x, y, z, 1}.ZProjectMatrix[d] / %[[4]]
HomogeneousToThreeD[{x, y, z, 1}.ZProjectMatrix[d]]
Simplify[ZOrthographic[HomogeneousToThreeD[{x, y, z, 1}.ZProjectMatrix[d]]]]

Out[26]= x, y, 0, 1 -
z

d


Out[27]= 
x

1 - z
d

,
y

1 - z
d

, 0, 1

Out[28]= 
x

1 - z
d

,
y

1 - z
d

, 0

Out[29]= 
d x

d - z
,

d y

d - z


The matrix for orthographic projection has d-> infinity. 

In[30]:= Limit[ZOrthographic[HomogeneousToThreeD[{x, y, z, 1}.ZProjectMatrix[d]]], d → ∞]

Out[30]= {x, y}

The perspective transformation is the only singular matrix in the above group.This means that, unlike 
the others its operation is not invertible. Given the image coordinates, the original scene points cannot 
be determined uniquely.

Example: transforming, projecting a 3D object

We are going to generate a "view" of random 3D object. Imagine that you've seen this view 
(threeDtemplate) and stored it in memory. Later you get a view (newvertices) of either the same object 
or a different one, and you want to check if it is the same object as before. You need to make some kind 
of comparison test.
We'll keep it simple and do orthographic projection.
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In[31]:= orthoproject[x_] := Delete[x, Table[{i, 3}, {i, 1, Length[x]}]];

Define 3D target object - Wire with randomly positioned vertices

In[32]:= threeDtemplate = Table[{RandomReal[], RandomReal[], RandomReal[]}, {5}];

First view

View from along Z-direction

In[33]:= lines = Partition[threeDtemplate , 2, 1];
fv3d = Graphics3D[{Thick, Red, Line[lines]}, ViewPoint → {0, 0, 100},

PlotRange → {{-1, 1}, {-1, 1}, {-1, 1}}, AspectRatio → 1, Axes → True,
AxesLabel → {"x", "y", "z"}, ImageSize → Small, PreserveImageOptions → True];

ListPlot view

We can also do the projection ourselves:

In[34]:= ovg = ListPlot[orthoproject[threeDtemplate], Joined -> True, PlotStyle ->

{Thickness[0.01], RGBColor[1, 0, 0]}, PlotRange -> {{-.5, 1.5}, {-.5, 1.5}}];

In[35]:= GraphicsRow[{fv3d, ovg}]

Out[35]=

-1.0-0.50.00.51.0z
-1.0 -0.5 0.0 0.5 1.0

x

-1.0

-0.5

0.0

0.5

1.0

y

-0.5 0.5 1.0 1.5

-0.5

0.5

1.0

1.5

New View

We pick an arbitrary view of the above object.

Use Homogeneous coordinates

In[36]:= swidth = 1.0; sheight = 1.0; slength = 1.0; d = 0;

In[37]:= homovertices = Transpose[Map[ThreeDToHomogeneous, threeDtemplate]];

newtransformMatrix = TranslateMatrix[.3, 0, 0].XRotationMatrixN
π

2
* .3.

YRotationMatrixN-
π

2
* .2.ScaleMatrix[swidth, sheight, slength];
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In[39]:= temp = N[newtransformMatrix.homovertices];

Take a look at the new view

In[40]:= newvertices = Map[HomogeneousToThreeD, Transpose[temp]];

In[41]:= ListPlot[orthoproject[newvertices], Joined -> True,
PlotStyle -> {Thickness[0.01], RGBColor[0, 0, 1]},
PlotRange -> {{-.5, 1.5}, {-.5, 1.5}}, ImageSize → Small]

Out[41]=

-0.5 0.5 1.0 1.5

-0.5

0.5

1.0

1.5

▶  1. Exercise: look at new view by coding the orthographic projection yourself

Modeling geometric variation: linear 2D image, geometry-
based modeling as an approximation to 3D scene-based 
variation

Suppose that we encounter a new view of the 3D object, i.e. from some new arbitrary viewpoint. This 
new viewpoint can be modeled as a 3D rotation and translation of the object.
If we want to see if the new and old images are of the same object, we could try to rotate a 3D represen-
tation of the object. But this would require knowledge of 3D. 

Alternatively, if one projects a rotation in 3D onto a 2D view, we can try to approximate the rotation by 
a 2D affine transformation. A 2D affine transformation is a simple 2D operation, perhaps it is sufficient 
to account for the generalization of familiar to unfamiliar views?

Affine transformation preserves parallel lines. 

We know that rotations, scale and shear transformations will preserve parallel lines. So will transla-
tions. It is not immediately apparent, that any matrix operation is an affine transformation, although 
one has to remember that translations are not represented by matrix operations unless one goes to 
homogeneous coordinates. Lecture 7 had a simple demo of the parallel line preservation for transforma-
tions of a square.
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Try to find values of a 2D matrix (M2={{m11,m12},{m21,m22}}) and 2D translations 
(x3,y3) that bring newvertices as close as possible to the threeDtemplate stored 
in memory. 

In[42]:= Manipulate[
x1 = orthoproject[threeDtemplate];
M2 = {{m11, m12}, {m21, m22}};

x2 = (M2.#1 &) /@ orthoproject[newvertices];
x2b = # + {x3, y3} & /@ x2;

GraphicsRow[{Graphics[Line[x1], PlotRange → {{-.5, 1.5}, {-.5, 1.5}}],
Graphics[{Line[x1], Line[x2b]}, PlotRange → {{-.5, 1.5}, {-.5, 1.5}}]},

ImageSize → Small],
{{m11, 1}, -2, 2}, {{m12, 2}, -2, 2}, {{m21, 2}, -2, 2},
{{m22, 0}, -2, 2}, {x3, -1, 1}, {y3, -1, 1}]

Out[42]=

m11

m12

m21

m22

x3

y3
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Compute closest least squares  affine match with translation

In[43]:= aff = {{aa, bb}, {cc, dd}}; tra = {ff, gg};
errorsum :=

Apply[Plus, Flatten[(# + tra & /@ (aff.#1 &) /@ orthoproject[newvertices] -

orthoproject[threeDtemplate])^2]];
temp = FindMinimum[errorsum, {aa, .8}, {bb, .2}, {cc, .16}, {dd, .8},

{ff, 0.0}, {gg, 0.0}, MaxIterations -> 200];
minvals = Take[temp, -1][[1]]; minerr = Take[temp, 1][[1]];
naff = aff /. minvals; ntra = tra /. minvals;
minerr

Out[48]= 0.154175

Check match with estimated view

In[49]:= estim = naff.Transpose[orthoproject[newvertices]] + ntra;

Plot first original view, new view and the affine estimate of the first from the new

In[50]:= evg = ListPlot[
{orthoproject[threeDtemplate], Transpose[estim], orthoproject[newvertices]},
Joined -> True, PlotStyle -> {{Thickness[0.002], RGBColor[1, 0, 0]},

{Thickness[0.005], RGBColor[0, .5, 0]},
{Thickness[0.005], RGBColor[0, 0, 1]}},

PlotRange -> {{-.5, 1.5}, {-.5, 1.5}}]

Out[50]=

-0.5 0.5 1.0 1.5

-0.5

0.5

1.0

1.5

Liu & Kersten (1998) compared human recognition performance with 2D affine observers. The targets 
were paper-clip like objects as above, except thicker with some shading. Human performance was 
somewhat better than the affine observer, suggesting that people can incorporate additional 3D 
information, perhaps from the shading/occlusion information, together with a "smarter" model.

Appendix: Neuropsychological and neurophysiological 
studies
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Appendix: Neuropsychological and neurophysiological 
studies

Neuropsychological Studies

Category-specific breakdowns
Inferomedial occipito-temporal region, (right hemi), fusiform and lingual gyri--> prosopagnosia. Can 
recognize other objects (even with comparable structural complexity), and can recognize a face as a 
face, and can name its parts. 
...but is it a problem with individuation in a class? Evidence suggesting prosopagnosics have a problem 
distinguishing fruits, playing cards, autos, etc.. Bird-watcher lost ability. Farmer couldn't identify his 
cows.
 Damasio's patients could recognize horses, owls, elephants, but had problems with dollar sign, British 
pound sign, musical clef.  --> perhaps a problem with inter-category discriminations (subordinate-
level), rather than complexity per se.
Corroboration--patient with car agnosia could still identify ambulance and fire engine (distinct entry 
point attributes)
BUT, propospagnosia does seem sometimes to occur without any of the subordinate-level deficit. 
Patients impaired for living, but not non-living things.
<<20 questions and recognition>>
Summary: Two types of visual memory:

recognition that involves representing and distinguishing prototypes
<<Different protypes in different IT hypercolumns?>>

recognition that involves distinguishing deviations between members with the same prototype 
(inferomedial  occipito-temporal)

<<processing within hypercolumn?>>

Deficits in recognizing facial expressions
Dissociation between face recognition and recognizing facial expressions.
Some proso's can't recognize an individual face, but can recognize the expression.
Damasio reports bilateral amygdala lesion patient could recognize individual faces, but did not do well 
with expressions of happiness, surprise, fear, anger, etc.. Monkeys too (Weiskrantz, 1956)
Metamorphopsia with faces. Another patient experiences metamorphopsia with objects other than 
faces.

Visuomotor
DF

Electrophysiological Studies

V1-> V2 -> V4 -> IT-> TEO (PIT) -> TE
not strictly serial
V2, V3, V4 , corpus callosum-> IT
TE, TEO connected to thalamus, hypothalamus,...
Object information might even skip IT and go to limbic structures or striatum...
>abstract categorizations (with high cue validity) perhaps possible even with damage to TE
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Physiological properties of IT neurons

Physiological properties of IT neurons
Gross. IT as last exclusive visual area.
Posterior TEO, cells similar to V4, visuotopic, repres. contralateral vis. field, rf.s larger than V4. (small as 
1.5 - 2.5 deg)
anterior TE, complex stimuli required. TE not visutopic, large ipsi, contra or bilat. rfs.
30 to 50 deg rfs.
Cells often respond more vigorously to Fovea stimulation 
Shape selectivity (some in V4), lots in IT. natural objects, walsh functions, faces, hands.
Invariance? Rare to find size or position constancy--but selectivity falls off slowly over size and position. 
Thus in this sense roughly 50% of cells show size and position invariance.
Cue invariant--motion, texture or luminance defined shape boundaries. BUT, contrast polarity sensi-
tive. >>shape from shading?
Two mechanisms? 1) prototypes of objects that can be decomposed into parts.

parts important.
2) holistic, configurational. Part features not useful for discrimination, but whole is.

Combination encoding

Tanaka & modules for similar shapes, columnar organization. \
>1300 prototype modules?? RBC?
Sufficient for representing an exemplar of a category? Or when holistic information is required?
L&S suggest combination encoding not used for holistic representation. Evidence: Many celss in TE and 
STS code overall shape of biologically important objects--not features or parts. Novel wire objects too.

Selectivity for biologically important stimuli

Face cells - TEa, TEm, STS, amygdala, inf. convexity of prefrontal cortex.
Some cells like features (e.g. eyes). Other like the whole face, or face-view, or even highly selective for 
face-gaze angle, head direction, and body posture. 
Face cells, invariant over size and position, less so over orientation--upright preferred.
Face identity cells in IT, 
but facial expression, gaze direction , and vantage point in STS
PET, posterior fusiform gyrus for face matching, gender disc.
mid-fusiform for unique face
IT cells for whole human body, mostly viewer centered cells. 20% holistic
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Configurational selectivity for novel objects

L et al., and L&S's work. on wires, etc.
ant. medial temporal sulcus
view-selective "blurred templates"
enantiomorphic views undistinguished
many showed broad size tuning
Action-related
MT -> parietal MST, FST, LIP, 7, 
LIP cells sensitive to grasp shape of hand

Compute closest least squares  affine match without translation

In[51]:= naff2 = Transpose[orthoproject[threeDtemplate]].
PseudoInverse[Transpose[orthoproject[newvertices]]]

Out[51]= {{1.44339, -0.523846}, {0.371013, 0.578403}}

Check match with estimated view

In[52]:= estim2 = naff2.Transpose[orthoproject[newvertices]];

Plot familiar view, new view and the affine estimate of the old from the new

In[53]:= evg = ListPlot[
{orthoproject[threeDtemplate], Transpose[estim2], orthoproject[newvertices]},
PlotJoined -> True, PlotStyle -> {{Thickness[0.02], RGBColor[1, 0, 0]},

{Thickness[0.01], RGBColor[0, 1, 0]},
{Thickness[0.01], RGBColor[0, 0, 1]}},

PlotRange -> {{-.5, 1.5}, {-.5, 1.5}}]

Out[53]=

-0.5 0.5 1.0 1.5

-0.5

0.5

1.0

1.5
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Test set of newvertices and threeDtemplate

In[54]:= (*threeDtemplate=

0.23981762582649485` 0.14312418380466885` 0.03003120544761813`
0.2624091279705781` 0.4565009537332048` 0.1221875974954246`
0.019392922865028396` 0.016530310373452352` 0.5906147114395374`
0.06481020981636326` 0.6548152420848915` 0.40459291550719`
0.6422482206653176` 0.7719461816974882` 0.22053936016974654`

*)

In[55]:= (*newvertices=

0.2215818503538964` 0.09974436717830631` -0.09854211812818665`
0.26452283137288907` 0.3891455135818127` -0.16199300398045482`
0.18952784909991596` 0.25183584120022917` 0.45991480775746235`
0.17676551774440416` 0.7093221832702079` 0.026256226849368618`
0.5640697249874365` 0.5756717475918378` -0.28280208011255054`

*)
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